參考價(jià)格
面議型號
品牌
產(chǎn)地
瑞士樣本
暫無看了attolight CL-STEM陰極熒光分析系統(tǒng)的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
CL-STEM陰極熒光分析系統(tǒng) | |
Monch 4107是一個(gè)用于STEM,可以實(shí)現(xiàn)好的信噪比和高的光譜分辨率陰極發(fā)光檢測器。它可以幫助研究人員實(shí)現(xiàn)對單個(gè)納米粒子,量子點(diǎn)或原子缺陷測量進(jìn)行超高分辨率的圖像和高光譜圖譜的檢測。 當(dāng)您使用STEM進(jìn)行陰極熒光光譜的探測,能夠*短的時(shí)間內(nèi)達(dá)到所需的信噪比是至關(guān)重要的,這樣您才可以在短時(shí)間內(nèi)測試更多的樣品。Attolight 采用創(chuàng)新技術(shù),在與樣品毫米級的間距范圍內(nèi),實(shí)現(xiàn)了大面積區(qū)域?qū)捔Ⅲw角高效率收集光子,而且僅僅只需利用STEM上的一個(gè)擴(kuò)展孔。 | |
Attolight M?nch 4107強(qiáng)大而高效。首先,反射鏡經(jīng)過精心設(shè)計(jì),獲得****的曲率半徑和小型化水平;它可以適應(yīng)在市場上大多數(shù)校正的STEM設(shè)備,同時(shí)保持足夠的剛度和3個(gè)自由度,允許完成亞毫米級的調(diào)整。其次,Monch 4107 直接收集樣品的陰極發(fā)光并耦合到光纖內(nèi),保證信號到達(dá)光譜儀的強(qiáng)度。*后,一個(gè)超快EMCCD相機(jī)測量信號并實(shí)現(xiàn)高的光譜分辨率,高光譜掃描能在幾秒鐘內(nèi)完成。數(shù)據(jù)可以直接通過其他技術(shù)(EELS, EDS)的軟件采集且并行顯示。 | |
Monch 4107并非插件。這是一個(gè)從事電子顯微鏡和光學(xué)和光譜學(xué)多年的專業(yè)知識公司提供的解決方案。Attolight將用于陰極熒光SEM分析系統(tǒng)研發(fā)中的設(shè)計(jì)、制造技術(shù)推廣到STEM設(shè)備。 Monch 4107包含3自由度快速校準(zhǔn)熒光收集反射鏡,光纖耦合高分辨率光譜儀,用于快速高光譜采集的scientific級高速相機(jī),以及具有掃描模塊STEM桿。 | |
產(chǎn)品參數(shù): 測試模式: 陰極熒光高光譜mapping. 光學(xué)部分:
探測器部分:
| 微定位系統(tǒng):
系統(tǒng)控制:
安裝要求:
(上下兩個(gè)極靴之間大于4mm)
μm |
主要特點(diǎn):
| 應(yīng)用領(lǐng)域:
氮化物半導(dǎo)體 (GaN, InGaN, AlGaN...); III-V族半導(dǎo)體(GaP,InP,GaAs...); II-VI族半導(dǎo)體(CdTe,ZnO...)
(例如:InGaN材料中In富集)
|
Monch 4107有一個(gè)堅(jiān)實(shí)的出版記錄,其中有關(guān)于納米等離子激元,量子納米光學(xué),單個(gè)量子阱的實(shí)時(shí)陰極發(fā)光探測,非線性學(xué)探測等報(bào)道。 已發(fā)表文獻(xiàn): (1)lMeuret, S., et al. Photon Bunching in Cathodoluminescence. Physical Review Letters 114, 197401 (2015) (2)lPantzas, K., et al. Role of compositional luctuations and their suppression on the strain and luminescence of InGaN alloys. Journal of Applied Physics 117, 055705 (2015) (3)lLosquin, A. et al. Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters 15, 1229 - 1237 (2015). (4)lTizei, L.H.G., et al. A polarity-driven nanometric luminescence asymmetry in AlN/GaN heterostructures. Applied Physics Letters 105, 143106 (2014) (5)lBourrellier, R., et al. Nanometric Resolved Luminescence in h-BN Flakes: Excitons and Stacking Order. ACS Photonics 1, 857 (2014) (6)lKociak, M., et al. Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique 15, 158-175 (2014) (7)lKociak, M. & St¨¦phan, O. Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews 43, 3865-3883 (2014) (8)lTizei, L.H.G., et al. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires.Journal of Physics: Condensed Matter 25, 505303,(2013) (9)lMahfoud, Z., et al. Cathodoluminescence in a Scanning Transmission Electron Microscope: A Nanometer-Scale Counterpart of Photoluminescence for the Study of II-VI Quantum Dots. The Journal of Physical Chemistry Letters 4, 4090-4094 (2013) (10)lPierret, A., et al. Structural and optical properties of AlxGa1-xN nanowires. Physica Status Solidi RRL 7, 868 (2013) (11)lTizei, L.H.G. and Kociak, M. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters 110, (2013) (12)lZagonel, L.F., et al. Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology 23, 455205 (2012) (13)lTizei, L.H.G. and Kociak, M. Spectrally and spatially resolved cathodoluminescence of nanodiamonds: local variations of the NV0 emission properties. Nanotechnology 23, 175702 (2012) (14)lTourbot, G., et al. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 23, 135703 (2012) (15)lJacopin, G., et al. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells. Applied Physics Express 5, 014101 (2011) (16)lZagonel, L.F., et al. Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure.Nano Letters 11, 568–573 (2011) |
暫無數(shù)據(jù)!