<b id="acoce"></b>
<mark id="acoce"></mark>

  • <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
      <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>
          1. 精品综合久久久久久97_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼_国产欧美精品一区二区三区

            手機(jī)版

            掃一掃,手機(jī)訪問

            關(guān)于我們 加入收藏

            復(fù)納科學(xué)儀器(上海)有限公司

            5 年金牌會員

            已認(rèn)證

            撥打電話
            獲取底價
            提交后,商家將派代表為您專人服務(wù)
            立即發(fā)送
            點擊提交代表您同意 《用戶服務(wù)協(xié)議》
            當(dāng)前位置:
            復(fù)納科技 >技術(shù)文章 >

            原子層沉積(ALD)技術(shù)在鋰電材料中的應(yīng)用(一):電極粉末包覆的必要性(上)

            原子層沉積(ALD)技術(shù)在鋰電材料中的應(yīng)用(一):電極粉末包覆的必要性(上)
            復(fù)納科技  2024-04-02  |  閱讀:1577

            手機(jī)掃碼查看

            鋰電池電極由各種類型的粉末制備合成,對粉末材料表面進(jìn)行包覆已經(jīng)成為提高電池性能的有效策略。尤其在固態(tài)電池中,固體電解質(zhì)顆粒(SSA) 和電極組合之間的界面兼容性問題仍然存在,通過界面涂層可有效地解決這一問題。


            因此,電極表面工程作為一項新興技術(shù),有望提高電池的性能和安全性。原子層沉積(ALD)技術(shù)已被證明是在亞納米尺度上制造無機(jī)薄膜的高效方法,可在平面甚至高曲率的顆粒表面控制薄膜厚度以及均勻性。


            090448_145103_jswz.png

            原子層沉積(ALD)包覆能保證超薄的均勻涂層


            01

            電極材料包覆的必要性

            在充放電周期中,大多數(shù)電池遇到的常見的與電極相關(guān)的問題是:電極體積的巨大變化導(dǎo)致的機(jī)械疲勞以及不穩(wěn)定的固體電解質(zhì)界面(SEI)和電解質(zhì)界面(CEI)層的形成。


            無論是由于 SEI 自身的不穩(wěn)定性質(zhì)還是電極的體積波動,都可能導(dǎo)致電解質(zhì)和電極表面之間的不間斷接觸,進(jìn)而引發(fā)的副反應(yīng)會消耗電解質(zhì),并使電極退化,最終導(dǎo)致電池失效。


            此外,在循環(huán)過程中,穩(wěn)定的 SEI 在界面處的絕緣性質(zhì)的積累會增加整體電池電阻,導(dǎo)致更高的過電位和容量衰減。通過沉積超薄涂層作為人工 SEI/CEI (ASEI/ACEI)來改變電解質(zhì)電極界面(EEI)是解決電池界面問題的有效策略。


            090542_839492_jswz.png

            界面問題是導(dǎo)致電池失效的重要因素


            02

            選擇粉末涂層還是極片涂層

            實際使用時,電極粉料混合添加劑制成漿料,并進(jìn)行涂布形成極片。電解質(zhì)滲透到電極的多孔結(jié)構(gòu)中,一方面有利于離子的傳輸,另一方面也為電解質(zhì)的分解和 SEI 的形成提供了更大的表面積。大的表面積導(dǎo)致較差的 SEI 鈍化,進(jìn)而刺激電解質(zhì)分解,最終使得循環(huán)壽命很差。因此結(jié)合實際情況衍生出兩種涂層改性的策略:


            1 直接應(yīng)用于成品電極的表面的涂層技術(shù)(DC:Direct Coating)

            2 對電極顆粒先進(jìn)行修飾改性

            (PC:Particle Coating)


            微信圖片_20240402090407.png

            左:顆粒包覆電極 右:平面涂層電極


            為了便于識別通過這兩種涂層改性策略獲得的電極,我們將平面涂覆電極稱為“DC”電極,將粉末涂覆電極稱為“PC”電極。而原始的未涂層電極被稱為“UC”電極。下圖展示了電極和電解質(zhì)中電子的相對能量以及 UC 電極可以達(dá)到熱力學(xué)穩(wěn)定的氧化和還原電位區(qū)域。這是因為在還原電位 μA 以上,負(fù)極會還原電解質(zhì),而在氧化電位 μC 以下,正極則會氧化電解質(zhì)。如果添加鈍化層(例如在 DC 和 PC 電極的情況下)阻礙 SEI 的電子轉(zhuǎn)移,則可以防止這種不穩(wěn)定的氧化還原反應(yīng),從而維持電極的穩(wěn)定。


            090710_332042_jswz.png

            電極的熱力學(xué)穩(wěn)定區(qū)域的能量圖示意圖,還原電位以上和氧化電位以下的區(qū)域需要 ACEI 來保持動力學(xué)穩(wěn)定


            Jung 等人在早期報告中將鈷酸鋰(LiCoO2)的 UC 陰極與 PC 和 DC Al2O3 包覆的 LiCoO2 陰極進(jìn)行了比較。在報告中,PC 比 DC 表現(xiàn)出更好的容量保持率。之后,Jung 等人報道了使用 DC 方法改性的 LiCoO2 和天然石墨(NG)電極比 PC 電極具有更好的循環(huán)性能。同樣,在一些報告中認(rèn)為 PC 電極具有更好的性能,特別是在高溫環(huán)境下;也有一些報告則認(rèn)為 DC 策略更好。


            綜上所述,直接對涂布好的電極進(jìn)行涂層修飾的路線(DC)似乎有利于絕緣涂層材料,但該方法不適用于較高的沉積溫度,因為這會導(dǎo)致極片中的粘結(jié)劑分解。


            但對于 ALD 工藝而言,過低的沉積溫度會導(dǎo)致不均勻性和化學(xué)氣相沉積(CVD) 產(chǎn)生。因此,需要更高的沉積溫度、極薄和更好導(dǎo)電材料涂層的情況下,粉末包覆(PC)策略更可行。


            而在實際生產(chǎn)中,極片的涂層制造(DC)依賴卷對卷 ALD 設(shè)備的成熟,但目前,量產(chǎn)型卷對卷設(shè)備依然有待驗證。而類似半導(dǎo)體或光伏 ALD 領(lǐng)域使用的片對片式設(shè)備,需要對極片進(jìn)行裁剪,是否適用于大規(guī)模量產(chǎn),還有待驗證。


            微信圖片_20240402090411.png


            微信圖片_20240402090413.png

            電極極片的卷對卷設(shè)備(上)以及傳統(tǒng)的批次片對片式 ALD 設(shè)備(下)


            下篇文章我們將為大家詳細(xì)介紹粉末原子層沉積(PALD)工藝及其在電極材料包覆中的應(yīng)用。


            03

            關(guān)于 Forge Nano

            Forge Nano 專注于粉末原子層沉積技術(shù)(PALD),憑借其專有的 Atomic Armor? 技術(shù),能夠使產(chǎn)品開發(fā)人員設(shè)計任何材料直至單個原子。Atomic Armor? 工藝生產(chǎn)的卓越表面涂層使合作伙伴能夠釋放材料的最佳性能,實現(xiàn)延長壽命、提高安全性、降低成本和優(yōu)化產(chǎn)品的功能。其科學(xué)家團(tuán)隊與廣泛的商業(yè)合作伙伴合作開發(fā)定制解決方案,能夠滿足任何規(guī)模的任何需求,包括從小規(guī)模研發(fā)和實驗室級別到工業(yè)規(guī)模、大批量生產(chǎn)。


            如果您想了解更多關(guān)于原子層沉積技術(shù)以及 Forge Nano 產(chǎn)品的詳細(xì)信息與應(yīng)用案例,或者有 DEMO 包覆、代包覆服務(wù)與設(shè)備試用的需求,歡迎掃描下方二維碼填寫信息。


            090852_066474_jswz.png

            參考文獻(xiàn)

            【1】Minji Lee, Waheed Ahmad, Dae Woong Kim, Kyu Moon Kwon, Ha Yeon Kwon, Han-Bin Jang, Seung-Won Noh, Dae-Ho Kim, Syed Jazib Abbas Zaidi, Hwiyeol Park, Heung Chan Lee, Muhammad Abdul Basit, and Tae Joo Park, Chemistry of Materials 2022 34 (8), 3539-358

            【2】Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S.-H. Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface 

            相關(guān)產(chǎn)品

            更多

            AFM-SEM原子力掃描電鏡一體機(jī)

            型號:AFM-in-Phenom XL

            面議
            Phenom MAPS 大面積圖像拼接

            型號:Phenom MAPS

            面議
            ChemiSEM 彩色成像

            型號:ChemiSEM

            面議
            飛納電鏡全景拼圖【新品】

            型號:Automated Image Mapping

            面議

            虛擬號將在 秒后失效

            使用微信掃碼撥號

            為了保證隱私安全,平臺已啟用虛擬電話,請放心撥打(暫不支持短信)
            留言咨詢
            (我們會第一時間聯(lián)系您)
            關(guān)閉
            留言類型:
                 
            *姓名:
            *電話:
            *單位:
            Email:
            *留言內(nèi)容:
            (請留下您的聯(lián)系方式,以便工作人員及時與您聯(lián)系?。?/div>
            狂野欧美性猛交xxxx_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼
            <b id="acoce"></b>
            <mark id="acoce"></mark>

          2. <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
              <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>