<b id="acoce"></b>
<mark id="acoce"></mark>

  • <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
      <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>
          1. 精品综合久久久久久97_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼_国产欧美精品一区二区三区

            手機版

            掃一掃,手機訪問

            關于我們 加入收藏

            麥克默瑞提克(上海)儀器有限公司

            15 年金牌會員

            已認證

            撥打電話
            獲取底價
            提交后,商家將派代表為您專人服務
            立即發(fā)送
            點擊提交代表您同意 《用戶服務協(xié)議》
            當前位置:
            美國麥克儀器 >公司動態(tài) >

            每周分享2.19

            每周分享2.19
            美國麥克儀器  2016-02-19  |  閱讀:1302

            手機掃碼查看

            今天給大家分享的是20158月份《RSC Advances》上發(fā)表的一篇名為:L-asparagine-assisted synthesis of flower-like -Bi2O3 and its photocatalytic performance for degradation of 4-phenylphenol under visible-light irradiation

            文章摘要如下:

            Synthesis of nanosized -Bi2O3 on a large-scale is a great challenge due to its metastable state. A facile L-asparagine-assisted reflux-calcination route was successfully developed for the large-scale preparation of -Bi2O3 micro/nanostructures under mild conditions (low temperature, atmospheric pressure, and wide temperature window). The composition, phase structure, morphology, surface area, and photoabsorption properties of as-synthesized -Bi2O3 and its precursor were systematically characterized. The phase transformation conditions and possible formation mechanism of flower-like -Bi2O3 were discussed. It is found that with a simple reflux process at 100 C under atmospheric pressure, uniform monodisperse bismuth-asparagine complex microspheres with average diameters of ~500 nm were produced, then flower-like -Bi2O3 micro/nanostructures were conveniently obtained after calcining the precursor at temperatures ranging from 340 to 420 C. A surface CO32- coordination effect introduced from L-asparagine was explained the formation of stabilized -Bi2O3 at low temperature (up to 420 C). The as-synthesized -Bi2O3 shows excellent photocatalytic activity toward the degradation of 4-phenylphenol under visible-light irradiation, which is 3.7 and 21.4 times faster than the removal rates of -Bi2O3 nanospheres and a commercial -Bi2O3, respectively, and allows for the elimination of 93.2% total organic carbon after 60 min of irradiation. In addition, the photogenerated reactive species were identified by radical scavenger experiments and electron paramagnetic resonance spectroscopy, then a possible visible-light-induced photocatalytic mechanisms was proposed.

            該文章中材料表征采用的是美國麥克儀器ASAP 2460

            詳情可參考下面鏈接:

            !divAbstract


            留言咨詢
            (我們會第一時間聯(lián)系您)
            關閉
            留言類型:
                 
            *姓名:
            *電話:
            *單位:
            Email:
            *留言內容:
            (請留下您的聯(lián)系方式,以便工作人員及時與您聯(lián)系!)
            狂野欧美性猛交xxxx_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼
            <b id="acoce"></b>
            <mark id="acoce"></mark>

          2. <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
              <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>