<b id="acoce"></b>
<mark id="acoce"></mark>

  • <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
      <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>
          1. 精品综合久久久久久97_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼_国产欧美精品一区二区三区

            手機(jī)版

            掃一掃,手機(jī)訪問(wèn)

            關(guān)于我們 加入收藏

            美國(guó)布魯克海文儀器公司上海代表處

            7 年金牌會(huì)員

            已認(rèn)證

            撥打電話
            獲取底價(jià)
            提交后,商家將派代表為您專(zhuān)人服務(wù)
            立即發(fā)送
            點(diǎn)擊提交代表您同意 《用戶(hù)服務(wù)協(xié)議》
            當(dāng)前位置:
            布魯克海文 >公司動(dòng)態(tài) >

            Nanobrook Omni測(cè)量應(yīng)用案例-47

            Nanobrook Omni測(cè)量應(yīng)用案例-47
            布魯克海文  2018-11-29  |  閱讀:1177

            手機(jī)掃碼查看

            文獻(xiàn)名: Lowering Fresh Water Usage in Hydraulic Fracturing by Stabilizing scCO2 Foam with Polyelectrolyte Complex Nanoparticles Prepared in High Salinity Produced Water

             

            作者:      H. Hosseini (University of Kansas) | J. Tsau (University of Kansas) | E. Peltier (University of Kansas) | R. Barati (University of Kansas)

             

             

            摘要:Polyelectrolyte complex nanoparticle (PECNP) systems compatible with produced water were developed to improve supercritical CO2 (scCO2) foam stability and to reduce fluid loss for fracturing applications. Foam viscosity, stability, fluid loss properties and cleanup of injected liquid through the formation were enhanced by PECNP-surfactant systems prepared in produced water medium. Taking advantage of produced water as energized fluids for fracturing requires enhanced compatibility of gas/liquid mixture. Two produced water recipes of 33,333 and 66,666ppm TDS were used to prepare 1 w/w% surfactant solutions. PECNP was formed as a mixture of positively- and negatively- charged polyelectrolytes. Experimental setup was designed to determine the aqueous foam stability at actual reservoir conditions. Rheological measurement was performed to measure the stability of the bulk foam under shear and to evaluate the foam texture properties. The improved viscosity of different proportions of PECNP-Surfactant (9:1, 8:2, 7:3, and 6:4) in aqueous foam mixtures was observed as compared to surfactant stabilized CO2 foam. The flow consistency index observed in the shear thinning region was also increased from 1184.3 to 2916.4 Pa sn in 33,333ppm and from 1035.7 to 1683.1 Pa snin 66,666ppm brine solutions. The view cell results revealed the high stability and longevity of scCO2 foam employing various proportions of surfactant to nanoparticle as oppose to surfactant generated foam in which the foam height shortened faster. The presented scCO2 generated foam can preserve the foam cellular structure in absence of crude oil. The PECNP-Surfactant system successfully lowered the interfacial tension to up to 74% and 93% for 33,333 and 66,666ppm brine salinity, respectively. Fluid loss was measured to evaluate fluid leak-off from a core when the high flow velocity along the core exists. The fluid loss for both CO2 and water leak-off were also lowered employing PECNP- Surfactant containing foam.

                                                             


            虛擬號(hào)將在 秒后失效

            使用微信掃碼撥號(hào)

            為了保證隱私安全,平臺(tái)已啟用虛擬電話,請(qǐng)放心撥打(暫不支持短信)
            留言咨詢(xún)
            (我們會(huì)第一時(shí)間聯(lián)系您)
            關(guān)閉
            留言類(lèi)型:
                 
            *姓名:
            *電話:
            *單位:
            Email:
            *留言?xún)?nèi)容:
            (請(qǐng)留下您的聯(lián)系方式,以便工作人員及時(shí)與您聯(lián)系!)
            狂野欧美性猛交xxxx_亚洲国产精品久久久久婷婷老年_成人区人妻精品一区二区三区_国产精品JIZZ在线观看老狼
            <b id="acoce"></b>
            <mark id="acoce"></mark>

          2. <bdo id="acoce"><optgroup id="acoce"></optgroup></bdo>
              <samp id="acoce"><strong id="acoce"><u id="acoce"></u></strong></samp>